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An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is pre-
sented. The project brings together several technologies to address NASA and US Army autonomous
vehicle needs, including a reactive planner for mission planning and execution, control system design
incorporating a detailed understanding of the platform dynamics, and health monitoring and diag-
nostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent ar-
chitecture and its application to the candidate mission are presented. Details of the vehicle hardware
and software development are provided.

INTRODUCTION
Enabling an unmanned helicopter to execute fully autono-
mous low-altitude scientific or military missions requires
technologies that are complex and largely unrealized. For
example, just to get to where it needs to go, an autonomous
helicopter would need to sense, classify, and identify land-
marks, reconcile those landmarks with stored maps, localize
itself to those landmarks, rapidly compute a path that would
keep it away from perceived obstacles or threats, and closely
follow that path in the presence of environmental distur-
bances. And all of this is before beginning to address the de-
cision process underlying the prosecution of mission objec-
tives. With few exceptions, these topics remain as unmet re-
search challenges.1Due to the lack of available autonomous
technologies, unmanned vehicles in operational use require
intensive operator oversight and control for even the sim-
plest missions. Both NASA and the US Army seek to ad-
vance unmanned vehicle operations beyond low-level con-
trol and significantly increase mission complexity and capa-
bility.
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NASA desires to free itself of the arduous task of having
mission controllers preplan every minute action of planetary
explorers. A rover crawling a few meters per day across the
surface of Mars, based on painstaking path planning by
Earth-bound experts, reduces scientific discovery to a
trickle. Far greater science output could be achieved if mis-
sions could capitalize on the range capabilities of a self-
directed rover, submarine, or helicopter.

The US Army seeks to exploit the low-altitude, hovering,
and vertical takeoff and landing capability of unmanned
helicopters without the intensive planning and execution re-
quired to avoid obstacles and threats. The mission flexibility
and situational awareness required by Army applications
will demand much more than can be achieved by flying from
waypoint to waypoint, high above any obstacles, dependent
upon clear GPS signal reception. This means developing the
autonomous technologies that can deal with the hazards en-
countered in the low-Earth environment and enabling self-
directed mission planning and execution with little or no op-
erator input.

The Autonomous Rotorcraft Project (ARP) is developing an
all-inclusive autonomous helicopter research platform using
unique in-house skills in helicopter guidance and flight con-
trol, robotics planning and scheduling, and emerging UAV
sensor technology. Unlike part-task research platforms, the
comprehensive ARP autonomous helicopter system will be
capable of identifying and addressing those weaknesses that
most impact mission effectiveness. This will be done so that



ARP can provide the needed design guidance to future
NASA and Army system development efforts.

The remainder of this paper will describe ARP efforts to
identify and solve the challenges of helicopter autonomy. In-
cluded in this description is a candidate mission on which
ARP development is focused, the associated vehicle hard-
ware and software development, and the chosen autonomous
agent architecture and its application.

PROJECT MOTIVATION
ARP is motivated by needs formally originating within the
NASA Computing, Information, and Communications
Technology Program (CICT, Ref. 1), the NASA Bio-
inspired Engineering for Exploration Systems Project
(BEES, Refs. 2 and 3), and the US Army Precision Autono-
mous Landing Adaptive Control Experiment (PALACE,
Ref. 4).

The NASA CICT program was established in 2001 to ensure
NASA's continuing leadership in developing and deploying
key enabling technologies for a broad range of mission-
critical tasks. ARP is primarily motivated by and funded un-
der the Intelligent Systems (IS) portion of CICT, a key ob-
jective of which is to develop systems that make decisions
with limited intervention. To address this objective, ARP
intends to develop, demonstrate, and assess the capabilities
of automated reasoning technologies in the context of the
complex rotorcraft environment. A rotorcraft serves as an
ideal platform for developing and demonstrating automated
reasoning software for Mars landers, aircraft or satellite
clusters, and other NASA flight applications. The complex
high-bandwidth dynamics and cluttered, unpredictable op-
erational environment provide an excellent surrogate for the
kinds of challenges likely to be faced in a remote robotic ex-
plorer mission.

The vision of the BEES program is that small, mechanical
platforms which mimic the mobility of biological systems,
can be built at low cost, instrumented and used as platforms
for carrying scientific instruments. ARP will support the
BEES program by providing a platform on which to flight
test surface feature recognition sensor technologies currently
under development (Ref. 5).

The US Army plans to address a broad range of vertical
takeoff and landing (VTOL) UAV topics in the coming
years. Under the PALACE Science and Technology Objec-
tive (STO) it has identified accurate, reliable autonomous
landing at remote un-instrumented sites as a challenging and
critical capability. ARP will contribute to meeting the goals
of the PALACE STO by providing a platform for the dem-
onstration and integration of the various technologies. This
will include developing and flight demonstrating autono-
mous landing on a slope, in moderate wind, and in the pres-
ence of obstacles.

PROJECT GOALS
To address the above objectives, ARP has adopted the fol-
lowing project goals: 1) close integration of a reactive plan-
ner with navigation, flight control, and mission systems, 2)
aggressive maneuvering in a real-world environment in-
cluding obstacle avoidance and landing at unprepared sites,
3) incorporation of vehicle health into mission planning, and
4) mission planning rapid enough to cope with the high-
bandwidth dynamic characteristics of small-scale helicop-
ters.

RECONNAISSANCE AND SURVEILLANCE
MISSION DEFINITION

Current development efforts are focused on creating a flexi-
ble autonomous reconnaissance and surveillance (R&S) ca-
pability. Fundamentally, this mission requires that the UAV
helicopter act with the goal of maximizing the value of re-
turned information. In pursuing this goal the vehicle will
need to balance various activities such as patrolling estab-
lished (pre-optimized) routes, dynamically modifying routes
in response to evolving situation information or to avoid
threats, investigating targets in response to special contin-
gencies, maneuvering to obtain optimum sensor perspec-
tives, repositioning to transmit gathered information, and pe-
riodically returning to base to refuel. Furthermore, the sys-
tem must be capable of seamlessly integrating information
provided by external systems or the desires of human users
who may wish to influence mission prioritization or conduct.

Mission flexibility will be achieved by allowing the overall
R&S information gathering requirements to be expressed
without specifying a particular plan of action (e.g., “go to the
warehouse; then orient camera one on the entrance; then take
a photo; then go to the loading area; etc.”).�Instead, the user
will define general preferences, plan knowledge, and target
or terrain characteristics (see Ref. 6 for a similar approach).
For example, it may be specified that a perimeter fence line
or building should be checked periodically for signs of in-
truders, that it would take approximately t minutes for an in-
truder to carry out an undesirable action, that intrusion at-
tempts will tend to occur at frequency f, and that there is an
expected cost c for failing to detect an intruder. Such a set of
parameters would result in a functional description of the
importance of visiting a target that is nonlinear with respect
to time. For instance, there may be a period immediately
following an observation where the importance of revisiting
a target to check for intruders remains low and unchanging.
This may be followed by a period where the importance in-
creases rapidly. Finally, this would be followed by a period
where it decreases to zero because in all probability the
damage has been done and the intruders have long since es-
caped. On the basis of such knowledge, autonomy mecha-
nisms would reason in a decision-theoretic sense about how
best to maintain surveillance over a set of targets including
optimizing target sequencing, determining safe routes,
choosing the proper sensor, maneuvering for the best camera
angles, and determining minimum dwell time.



These same autonomy mechanisms will make it possible to
adapt surveillance decisions in response to events that may
be difficult for a person to anticipate or respond to rapidly.
For example, on becoming informed that some friendly en-
tity has just examined one of its surveillance targets, the
UAV might delay subsequent surveillance of that target.
This reflects an ability to balance the goal of maintaining
current (non-obsolete) information about a target against the
opportunity cost of examining one target instead of another.
In contrast, intruder alarms sounding at several targets at
once would require rapidly modifying surveillance strategy
in a dramatic way to reflect an increase in urgency for ex-
amining those targets.

The R&S mission provides a focus that balances the desire
to demonstrate a flexible autonomous system against the
computational and sensor capabilities of the platform. The
remainder of this paper will describe the hardware and soft-
ware development efforts to support such a demonstration.

HARDWARE DEVELOPMENT
Two Yamaha RMAX helicopters are used as demonstration
platforms for ARP (Fig. 1). The RMAX was originally de-
veloped for remote control agricultural seeding and spraying
but has been adapted here for use as an autonomy demon-
stration platform. The aircraft is capable of approximately
one hour of hover flight duration with a 65 lb payload. The
payload capability makes it possible to use off-the-shelf sen-
sor and computer hardware and avoid the cost and complex-
ity of component miniaturization.

Fig. 1. ARP RMAX research aircraft.

An avionics payload and stub wing camera mount have been
developed for use with the ARP RMAXs. Total weight of
the payload and wing is approximately 45 pounds. The pay-
load is shown in Fig. 2 and its components are listed in Ta-
ble 1. Two computers are used to distribute the computa-
tional load and to separate the more computationally inten-
sive vision processing from the critical flight control tasks.
The payload is powered by the RMAX generator, which has
been oversized to provide approximately 100 watts of power
to the research hardware. The carrier-wave-phase-tracking

differential GPS system provides centimeter level accuracy
relative to the base station. The three radio modems function
as a single unit and are collectively capable of 345k baud
transmission rate but typically sustain approximately 200k
baud. With a maximum transmission power of one watt, the
radio modems are theoretically capable of a 20 mile range,
but this has not been tested.

The avionics payload PC/104+ computer communicates with
the RMAX on-board Yamaha Attitude Control System
(YACS) computer via four serial lines. Three of the serial
lines enable reading of the Yamaha rate and attitude sensor
package, the standard RC-control radio receiver signals, and
the Yamaha YACS computer internal variables. The fourth
serial line serves to bypass the actuator commands generated
by the Yamaha YACS computer thus enabling the avionics
payload to serve as the flight control computer. Communi-
cation transport delays of approximately 40 msec have been
measured for each of the serial lines significantly impacting
flight control law performance.

Engagement of the PC/104+ computer as the flight computer
is achieved via a pushbutton on the Yamaha RC transmitter.
A watchdog timer on the Yamaha YACS computer causes
control to revert to the standard RC receiver when actuator
commands stop being received on the serial line. A second
timer causes the helicopter to enter a full-down collective
and throttle idle setting if there are neither RC nor serial line
actuator commands being received.

Mounted externally is a vibration-isolated stub wing with
four digital cameras. The cameras are shown in Fig. 3 and
the wing components are listed in Table 1. The Unibrain
camera will serve initially as a situational awareness aid.
The stereo pair of cameras have a 40-inch baseline and are
intended to provide input to a passive range estimation algo-
rithm on the compact Peripheral Component Interconnect
(PCI) computer. The camcorder serves as a full-rate on-
board video recording mechanism. All four cameras are
connected via a Firewire hub to the compact PCI computer
and are fully controllable via that link.

An instrumentation trailer has been developed to support de-
velopment and testing activities (Fig. 4). The trailer contains
extensive resources including two Linux-based workstations
and one Mac G4 workstation for use in development and op-
eration. An on-board Ethernet switch and satellite hubs pro-
vides easy expansion capability for laptops. Each worksta-
tion is equipped with dual flat-panel LCD displays. There
are also a GPS ground station and three radio modems for
communication with the aircraft. A video distribution system
enables display of vehicle situational awareness information
on the upper display at each workstation.



PC104 flight
computer

Power distribution

Radio modems (3)

Analog conditioning

Crossbow AHRS

Ashtech DGPS

Compact PCI
video computer

Sonar

Fig. 2. Payload components (lid removed and side doors opened for clarity).

Fig. 3. Point Grey digital camera and Canon camcorder (left);
Unibrain and Point Grey digital cameras (right).

Fig. 4. Instrumentation trailer and aircraft; one of four work-
stations (inset).



Table 1. Avionics payload and wing components.

Component Description

Avionics Payload

PC/104+ computer
Versalogic Panther processor (400 MHz AMD K6), Connect Tech Xtreme/104
8-port serial communications board (460.8 Kbps), RTD DM7520-8 ADC
board, 512 Mbyte high-speed CompactFlash memory

Compact PCI computer Inova ICP-PIII (700MHz Pentium III, fanless) with integrated Ethernet and
IEEE-1394 interfaces, 3U cPCI chassis

Crossbow AHRS IMU Rate, attitude, heading, and acceleration sensor employing MEMS-technology
and three-axis magnetometer, RS-232 interface

Ashtech DGPS Ashtech/Magellan Z-sensor GPS with Real Time Kinetic (RTK) and 10 Hz
output options, RS-232 interface

900 MHz radio modem (2) Freewave DGR09 radio modem, 115.2 Kbps, 1 watt (25 mile range with 3 dB
antenna), RS-232 interface

2.4 GHz radio modem Freewave I-Series radio modem, 115.2 Kbps, 500 mw (20 mile range with 3
dB antenna), RS-232 interface

Power distribution PCB Project power distribution (custom-built)
Analog conditioning PCB Analog conditioning board (custom-built)
Sonar EDP Ultrasonic Sonar Transducer, 6 in to 10 ft range, analog interface

Accelerometers Measurement specialties ACH-01, 150 g, low pass filtered at 5 kHz; used for
vibration measurement at different locations

Temperature sensors National Semiconductor LM60 solid state temperature sensors; used for tem-
perature measurement at different locations

Stub Wing

Unibrain Fire-i400 camera 640x480 pixel machine vision camera, C-mount lens, IEEE-1394 interface

Point Grey DragonFly camera (2) 640x480 pixel monochrome camera, stereo pair with 40-inch baseline for pas-
sive ranging, IEEE-1394 interface

Canon camcorder DV camcorder with progressive scan mode, IEEE-1394 interface
Firewire hub IEEE-1394 hub interconnects cameras and Compact PCI computer

Other

Weight-on-wheels sensors Sensotec Model 13 analog force transducers (250 lb range) with custom ampli-
fier, transducers integrated into rubber backstops for skids

900 MHz antenna MaxRad 900-928 MHz 3 dB antenna on stub wing (2); MaxRad 5 dB antenna
on ground (2)

2.4 GHz antenna Mobile Mark 5 dB antenna on tail boom; Mobile Mark 9 dB antenna with car-
dioid reflector on ground



SOFTWARE ARCHITECTURE
All ARP operational and development computer environ-
ments are Linux-based. To the extent possible, all software
being used including flight control, image processing, com-
munications, telemetry, and health monitoring has been de-
veloped in-house or adopted from open-source software. All
project software is version controlled using Concurrent Ver-
sion System (CVS) tracking.

The on-board and ground software architecture is shown in
Fig. 5. It is important to note that the architecture has been
specifically designed so that identical source code is used in
the development environment, during hardware-in-the-loop
testing, and in flight. This provides confidence in the integ-
rity of software before field testing.

The elemental software modules are:

domsD – a Distributed Open Messaging system (DOMS)
communications daemon which runs on each ARP com-
puter. All communication between processes is achieved via
the DOMS daemon (described in detail in a later section).

taskMaster – a process launcher and monitor that runs on
each ARP computer. The taskMaster is responsible for
starting ARP programs in a specified order as well as adding
desired delays in the startup sequence. This module also
monitors a heartbeat generated by each process it starts and
then restarts them in case of unexpected termination.

CLAW – the inner and outer loop Control LAWs for the
RMAX helicopter. This module implements an attitude-
command/attitude-hold (ACAH) system and the path fol-
lowing system. This program also includes all engage and
disengage logic and has a simple internal aircraft model for
use during hardware-in-the-loop ground testing.

healthPlus – monitors various system health related pa-
rameters such as vibration and temperature. This program
also flashes external LEDs that indicate the state of the Apex
reactive planner.

GPS – reads the onboard GPS and communicates coordi-
nates to other ARP processes. This module accepts differen-
tial corrections from a ground-based GPS and provides them
to the onboard GPS for greater accuracy.

GPS Base – reads the ground GPS and sends differential
corrections to the onboard GPS.

Apex – the reactive planner described below.

RDS – Remote Diagnostic Server health monitoring software
(described below).

Path smoother – algorithm that accepts predefined way-
points and returns a smoothed path using a natural spline fit
optimized to keep the path within specified corridor con-
straints and adding straight line segments between widely-
separated waypoints. Example output of the path smoother is
shown in Fig. 6.

stateRip – DOMS-to-shared memory translation program
which writes position and orientation of the aircraft into
RIPTIDE shared memory.

RIPTIDE – Real-time Interactive Prototype Technology In-
tegration/Development Environment (RIPTIDE, Ref. 7).
This is used extensively for both development and visuali-
zation. It is used as a real-time desktop environment for
navigation and flight control law development, as well as
testing of Apex (see below). It is also used as a visualization
tool during flight to provide a high-fidelity simulated view
of the aircraft and operating environment synthesized from
telemetered aircraft state and position data (Fig. 7).

Moving Map –shows the location of the aircraft and provides
a human interface to Apex and the path following system.

videoSend, videoReceive –controls the onboard cameras and
sends camera images to other processes.

APEX REACTIVE PLANNER
ARP employs Apex, an autonomy architecture designed to
operate in uncertain task environments like that of the R&S
mission (Ref. 8). The core element of Apex is a reactive
planning algorithm (Refs. 9 and 10) that selects actions
based partly on a library of stored partial plans. Such plan-
ning algorithms are considered reactive, because decisions
about the next course of action evolve as new decision-
relevant information becomes available. For example, re-
connaissance of a particular location might be delayed in re-
sponse to hazardous weather conditions or, alternately, in-
creased in urgency if weather conditions are likely to make
the route hazardous later. Similarly, a decision regarding
how to get to the location might be made (or changed) at any
time in the course of carrying out the overall R&S plan
based on changes in the probable locations of hazards and
information opportunities.

Reactive versus Classical Planners

The Apex reactive planning approach contrasts sharply with
that of classical planners, which not only select all actions in
advance of execution, but do so by constructing new plans
rather than retrieving stored plans. The two approaches rep-
resent a tradeoff. Classical approaches, used in many robotic
applications, are generally sound and complete; i.e. able to
create plans of guaranteed validity if any such plan is possi-
ble. However, they generally require comprehensive and
detailed information about the environment in which the
plan will be executed. Uncertainty arising from such things
as unpredicted events, changes in task priorities, or failures
to successfully execute an action, undermine a classical
planner. This often makes it impossible to generate a plan of
even plausible validity. Moreover, classical planning is
computationally intensive and thus slow. Therefore, the
drawbacks of the classical approach can make it incompati-
ble with the requirements of a practical R&S capability. In
contrast, reactive planners are appropriate for the R&S mis-
sion as they were invented specifically to be both fast and
robust to uncertainty.
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Fig. 6. Moving map showing output of path smoother; way-
points shown in red, constraint corridor shown in gray.

Fig. 7. RMAX and Instrumentation trailer (top); real-time
RIPTIDE view of same (bottom).

The Apex architecture was originally designed to emulate
human behavior in domains such as air traffic control where
correct behavior is partially defined by a set of standard op-
erating procedures. Standardizing procedures in such do-
mains has several advantages that are believed to be applica-
ble to R&S missions. These include enhanced ability to co-
operate with other agents and greater optimization of be-
havior with respect to statistical regularities (risks and bene-
fits) in the environment. Standardization also enhances pre-
dictability, which in turn facilitates human-system interac-
tion. Carried out concurrently or interleaved, procedures can
interact and potentially conflict. The main challenge in de-

ciding action in such procedure-driven domains, either for an
autonomous agent or a real human operator, is thus to coor-
dinate the execution of multiple procedures.

Procedure Definition Language (PDL)

Apex synthesizes a course of action mainly by linking to-
gether elemental procedures expressed in Procedure Defini-
tion Language (PDL), a notation developed specifically for
the Apex reactive planner. A PDL procedure consists of at
least an index clause and one or more step clauses. The
index uniquely identifies the procedure and describes a class
of goals for which the procedure is intended. Each step
clause describes a subtask or auxiliary activity prescribed by
the procedure. Steps are not necessarily carried out in the or-
der listed or even in a sequence. Instead, they are assumed to
be concurrently executable unless otherwise specified. If a
fixed step ordering is desired, a waitfor clause is used to
specify that the completion of one step is a precondition for
the start of another.

Fig. 8 shows a simple example of PDL. In the example, the
step labeled checkout waits for the ascent to hover action to
complete. The monitoring steps (labeled mon1 and mon2)
must wait for the checkout step to complete, but they are not
otherwise constrained by the logic of the procedure. In par-
ticular, no ordering constraints are imposed between moni-
toring steps. If the procedure was allowed to control two
UAVs, it would allow both monitoring steps to be executed
in parallel. In this case, Apex would automatically detect
that the two steps cannot be carried out concurrently and
then attempt to resolve the conflict on the basis of prefer-
ences (such as those specified in each step’s priority clause)
and current situational information. Conflict resolution in
such cases means deciding order and is thus inherently a
scheduling problem. The set of conflicting tasks – there may
be more than these two, since other procedures may be exe-
cuting in parallel – are passed to Apex’s priority-based
scheduler, which attempts to optimally sequence the tasks.

The example above illustrates two ways order can be deter-
mined: 1) by explicit constraints in a stored procedure, or 2)
by preference criteria (priorities) employed by scheduling
mechanisms to resolve conflicts. This flexibility is at the
heart of Apex’s integrated approach, allowing the system to
draw on the capabilities of a reactive planner or on those of a
scheduler as appropriate. This integration of scheduling with
reactive planning has proven crucial for past applications of
the Apex framework (Ref. 11). The main elements of the
current approach are described in Refs. 8 and 12. In future
work, the system’s scheduling capabilities will be extended
to take advantage of a more sophisticated model of priority.



(procedure

   (index (do surveillance sector-1))

   (step start (ascend to hover (50 feet)))

   (step checkout (test telemetry) (waitfor ?start))

   (step mon1 (monitor warehouse-1 still-image) (waitfor ?checkout)

(priority (theft) :urgency (30 min) :importance 100))

   (step mon2 (monitor north-entrance still-image) (waitfor ?checkout)

(priority (intrusion) :urgency (20 min) :importance 40))

   (step aux1 (refuel at base) (waitfor (fuel-level low))

(priority (vehicle-health) :urgency (5 min) :importance 200)))

Fig. 8. Sample Apex PDL.

User Input to Apex

The described approach is meant to support the primary goal
of performing R&S without human intervention. However, it
is anticipated that the system will interact with humans in
several ways ranging from narrow interventions in runtime
behavior (e.g., adding a new surveillance target) to creating
new operating procedures for the vehicle to follow. The goal
is to support interactions across this range, insuring that us-
ers will not have to learn and write PDL procedures for sim-
ple interactions, but also going as far as possible in support-
ing users who wish to define and modify agent behavior in
substantial ways.

Apex Example: Sequencing of Waypoints

Sequencing of waypoints by Apex has been demonstrated in
simulation. This was achieved through the integration of all
of the software components and messaging system (DOMS,
described below) in the RIPTIDE environment. PDL was
developed for Apex that solved for the path around a series
of waypoints that would minimize obsolescence of the way-
points as a whole. Fig. 9 shows the moving map from the
simulation with the waypoints indicated as colored symbols
that turn from green, to yellow, to red as they obsolesce. In
the figure, the aircraft is flying the waypoints in the se-
quence commanded by Apex. The sequence is continually
updated as waypoints are added or removed or as new in-
formation about the waypoint obsolescence becomes avail-
able.

DISTRIBUTED OPEN MESSAGING SYSTEM
(DOMS)

ARP requires a communication standard that can cope with
the intensive data flow between the wide variety of proc-
esses necessitated by the R&S mission. Flight control, path
generation, video processing, health monitoring, and mission
planning all have different needs with respect to data com-
munication bandwidth, synchronization, and quality. To
meet this need, on-board and telemetry information ex-
change is performed using the newly-developed Distributed
Open Messaging System (DOMS).

Fig. 9. Moving map showing Apex path planning (no path
smoothing).

DOMS uses a publish-subscribe style message passing
communications architecture. Publish-subscribe message
passing is the preferred way to handle data flow from multi-
ple asynchronous sources as is commonly found in robotics
applications. The publish-subscribe technique allows data to
be exchanged with little or no information about other proc-
esses in the system. This allows the modules in the system to
be started or restarted in any order. It also allows the system
to easily expand as more advanced hardware and software
becomes available. For example, if a camera payload wants
to know “where are we?”, it simply subscribes to the vehicle
state message and is then notified of the current vehicle state
as often as it is updated.

DOMS is designed for both local and widely distributed
systems. By using message passing, DOMS makes the loca-
tion of modules irrelevant. For example, modules may be
running on the same CPU, a different aircraft CPU, within a
separate payload, or on the ground. A communications
transport daemon, domsD, is run on each computer to fa-



cilitate the exchange of information. The daemon is started
before any other modules and relays messages without hav-
ing to decode or convert them. If the computers are con-
nected by one or more unreliable communication links, the
transport daemon can use multiple connections or multiple
transmissions to insure that the message is delivered. The
transport daemon can also compress messages to improve
communications efficiency. All the issues of byte order and
local structure field sizes are handled transparently by
DOMS, allowing a heterogeneous mix of computers. In ad-
dition, the binary messages can be efficiently logged for post
processing.

Messages are published by or subscribed to using a DOMS
uniform resource locator (URL), samples of which are
shown in Table 2. Similar to a web browser URL, a DOMS
URL contains the message type, the sending module, and the
message name. Variable types handled include unsigned
short integers, long integers, floats, doubles, and character
arrays. Both static and dynamic arrays are handled. Optional
parameters allow additional information to be specified as
needed (e.g., Quality of Service (QoS) requirements). When
subscribing to a message, the module and message name
may utilize pattern matching to filter from all the possible
messages being sent in the system.

DOMS supports structured, binary messages. The structure
of a message is defined by Compact eXternal Data Repre-
sentation notation (CXDR). This allows the fields of the
message to be described precisely. Special notation allows
strings and variable length arrays to be properly handled.
Sub-structures, enumerated types, and numeric constants are
also supported. A code generator creates the following code
from the CXDR message description: C/C++ headers, mem-
ory allocation, packing, byte swapping, printing, and a Py-
thon language interface. The generated code accounts for the
specifics of the local computer, checks for buffer overflows,
supports debugging, and does not require any manual edit-
ing. To date, DOMS has been tested under the Linux, IRIX,
Solaris, and Mac OS X operating systems.

A variety of communications channels may be used (TCP,
UDP, Unix domain streams, etc). This allows QoS needs of
specific messages to be matched with the properties of the
given channel.

CONTROL LAW SOFTWARE ARCHITECTURE
The Control Law (CLAW) provides attitude stabilization
and waypoint guidance control. CLAW is organized as
shown in Fig. 10. There are two threads of execution. The
higher priority main thread cycles at 50 Hz. The lower pri-
ority thread runs the Message Handler. Data flow in and out
of CLAW by either communicating directly with the vehicle
serial ports or passing DOMS messages through the Mes-
sage Handler. The purpose of separating the Message Han-
dler into its own thread was to segregate the non-
deterministic network protocol portion of CLAW from the
more strictly scheduled 50 Hz main thread.

Table 2. Partial listing of DOMS messages.

doms:///gpsPosition/gps/position – aircraft position
values obtained from the onboard GPS receiver
doms:///gpsVelocity/gps/velocity – aircraft velocity
values obtained from the onboard GPS receiver
doms:///domsMsgCharArray/basegps/corrections –
GPS differential correction values obtained from the
ground GPS receiver
doms:///rcDynamicState/claw/dynamicState – aircraft
state values including Euler angles, position and veloc-
ity; assembled from IMU and GPS data
doms:///rcSimpleWaypoint/apex/waypoint – waypoint
information sent to the waypoint follower by Apex
doms:///rcLoadWaypoint/apex/loadwaypoints – in-
structs the waypoint follower to start following the
waypoints previously sent by Apex; also includes a
bounding box which all the waypoints must reside
doms:///rcSpeed/apex/speed – sent from Apex – con-
tains maximum speed with which the waypoint fol-
lower should fly the waypoints
doms:///rcHeading/apex/
heading – sent from Apex – contains desired heading
the aircraft should assume while flying the waypoints
doms:///rcSimpleWaypoint/claw/currentWaypoint –
sent to Apex– contains information from waypoint
follower about waypoint currently being flown
doms:///rcSimpleWaypoint/map/selectedWaypoint –
sent to Apex from the moving map – allows a human
operator to instruct Apex to insert a waypoint of the
operator’s choosing
doms:///domsMsgChar/claw/flash – contains the type
of signal used to drive the onboard flashers; onboard
flashers are activated to give ground personal an
indication of the operational state of the aircraft

Format:  protocol://hostname/structure_name/
sending_process_name/description

Compiler directives are used to target build types for various
stages of the code development and testing. Build types dif-
ferences are confined to the Input and Output modules so
that each level of testing uses identical core control law
code. A standalone version can be built to run independently
for low level testing. A version can be built to run in the
RIPTIDE environment, which is useful for higher level sys-
tem testing and for checking operational procedures. Finally,
the flight version can be built and run on the vehicle com-
puter. A built-in linear test model can be enabled to perform
closed loop testing for all of the build types.

DOMS messages communicated by the Message Handler in-
clude the following: 1) low-rate measurements such as GPS
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Fig. 10. Control law software architecture.

and Sonar Altitude, which are used to estimate the vehicle
position and velocity; 2) operator commands to change
CLAW variables; 3) telemetry data to the ground for display
or recording; and, 4) guidance information from the planner
in the form of waypoints.

The Input Module reads both the vehicle serial data and
processes any messages arriving in the Message Handler.
High-rate attitude, attitude rate, and acceleration measure-
ments critical to the attitude control are read directly from
the serial ports on each cycle of the control law. The low-
rate measurements are de-queued from the buffers filled by
the Message Handler and distributed to various internal data
structures for use by the control law. Waypoints received by
the reactive planner are also de-queued and sent to the way-
point controller. Any ground commands are also processed
here.

The Signal Processing module receives the sensor input and
applies the necessary filtering to generate vehicle dynamic
state estimates. This module also conditions the actuator ac-
tivity and other vehicle health related data.

The Waypoint Controller takes the vehicle state estimates
and the waypoint data from Apex and commands the Inner
Loop Controller. The inertial position and velocity are con-

verted to attitude commands and altitude rate commands,
which are sent to the Inner Loop Controller.

The Inner Loop Controller feeds back the vehicle state in-
formation to provide an ACAH control system to the Way-
point Controller. The control law is designed using single
input/single output design techniques on each axis of control
using stick coordinates. The stick coordinates are then trans-
formed into actuator commands, which are sent to the Out-
put Module.

The Output Module sends all data through either the serial
port or the Message Handler. Actuator commands from the
Inner Loop Control are sent though the serial port. All other
low rate data are sent through the Message Handler.

As mentioned previously, CLAW has a built-in Model
which can be enabled for testing purposes. The model con-
tains the key components that significantly affect the quality
of the feedback including the identified vehicle model, non-
linear kinematics, position and rate limited actuators, trans-
port delay, sensor noise, and sensor quantization effects. The
actuator commands are sent to the internal model as well as
the vehicle actuators. The identified linear flight model was
obtained from flight test data using established system iden-
tification methods (Ref. 13). Fig. 11 shows a frequency re-
sponse comparison of the identified pitch-rate-to-
longitudinal-stick linear model to flight data. Enabling the
model in the flight build allows for limited hardware-in-the-
loop (HIL) closed loop testing on the ground. During HIL
testing the sensor measurements are overwritten with the
internal model values.
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stick linear model frequency response to the same response

derived from flight data.



CLAW provides the ability to make variable changes during
execution. This enables the ground operator to adjust system
gains during development and is also the mechanism by
which the ground operator alters the state of the control law
(e.g., opening or closing a particular feedback loop). Spe-
cialized handshaking between the air and ground computers
ensures that uncorrupted values within predefined bounds
have been transmitted prior to being deposited. A master re-
set capability provides immediate reconfiguration of all al-
tered variables to pre-flight initial states.

VEHICLE HEALTH MANAGEMENT
UAV reliability has proven to be a challenge due to their
typically single-string flight control and sensor systems, and
limited self awareness (Ref. 14). ARP will be addressing this
area using a number of previously developed diagnostic
tools. The real-time information produced by these tools will
be used as input to the Apex reactive planner to aid in mis-
sion planning.

A suite of commercial tools developed by Qualtech Systems,
Inc. under NASA SBIR funding provides the modeling envi-
ronment as well as the real-time diagnostic routines. The
Remote Diagnostic Server (RDS, Ref. 15) provides the in-
flight capability, while QSI's TEAMS (Testability Engi-
neering and Maintenance System) tool is used to develop the
system model initially used for testability analysis of the
system design. The model is also used by RDS for online
monitoring and diagnostics. These tools have been used in
other recent NASA applications for Integrated Vehicle
Health Management and are included in Honeywell’s open
architecture definition for IVHM, developed under the Space
Launch Initiative, described in reference 16. This method
will serve as a baseline for other diagnostic strategies that
may be applied in ARP.

A model-based approach is being used to capture system in-
formation for use in an intelligent diagnostic capability. A
dependency model captures the system’s configuration and
observability. The multi-signal hierarchical modeling meth-
odology uses a directed graph to capture the effects of fail-
ures in terms of their propagation paths (Ref. 17). The graph
model being developed for ARP is shown in Fig. 12. The
initial model tracks the hardware and software configuration
and provides documentation of the available sensors and
how they are utilized.

Propagation algorithms convert the graph to a single global
fault dictionary for a given mode and state of the system.
This dictionary contains the basic information needed to in-
terpret test results and diagnose failures during real-time
monitoring. In the real-time implementation, the sensor data
must be processed to determine features that can be mapped
to the health status of the component or function being
monitored. Once these features are defined, tests are devel-
oped that compute the features and map them to various

failure modes or off-nominal behaviors. These tests will be-
come part of the healthPlus module which will then forward
the test results to a higher-level reasoning module. The
graph model is then used to analyze the propagation of the
effects of off-nominal behavior to diagnose the root cause of
the problem.

Using RDS to Monitor Mode Switching

One of the first goals in developing the health management
system, beyond simple threshold tests, is verification that the
RMAX is ready to transition between flight modes. As sen-
sors and flight parameters are monitored during a flight, the
RDS will monitor system status and advise whether the sys-
tem is ready for transitioning from remote control to com-
puter control, for example. In order to accomplish this goal,
the dependency model will need to capture mode-specific
behavior and be capable of discerning the correct operation
of the components that are critical to the desired mode,
function, and transition. During the initial development
phase, the decision to transition will be made by the ground
crew after manually reviewing a checklist in combination
with system status checks that can be performed by CLAW.
By incorporating the results of the monitoring capability that
CLAW performs into the RMAX dependency model, these
two check-out steps can be performed automatically and the
test results analyzed by RDS. RDS will then provide a deci-
sion whether to proceed with the mode transition. Additional
advanced capabilities are under investigation for incorpora-
tion into an intelligent health management module that can
provide status of available functions to the mission planner.

CONCLUDING REMARKS
Autonomous helicopter operations, be they for scientific or
military purposes, pose many complex challenges. The
Autonomous Rotorcraft Project (ARP) has developed an
autonomous helicopter research platform to identify and ad-
dress those weaknesses that impact autonomous mission ef-
fectiveness the most. By demonstrating and evaluating po-
tential solutions to these problems, ARP will provide much
needed design guidance to future NASA and Army system
development efforts. Key project efforts include:

1) Definition of an autonomous R&S mission that focuses
development of a wide range of autonomous technologies
and demonstrates the potential of future systems.

2) Integration of dual flight computers, precision GPS, ana-
log temperature and vibration sensors, digital radio teleme-
try, and four digital cameras (including a wide-baseline ste-
reo pair) into a Yamaha RMAX helicopter resulting in a
system that is highly capable yet flexible enough to permit
easy integration of additional sensors or technologies.

3) Integration of the Apex reactive planner providing a new
framework for rapid mission definition and execution that is
robust to uncertainty.



RMAX_subsyste

Radio_transmitter

Transmission
Engine

Rmax

main_rotor

tail_rotor

Throttle
power
fuel
air

coolant

thottl
power
fuel_o
air_fi
water_

shaft_
exhaust
coolant 1

1 1 1

1

1

1 1

4

5

2
6

1

1
2

1
2
3

1
2
3

1
2

Subsystem

Subsystem

Fig. 12. Screen capture of TEAMS graph model development tool showing ARP RMAX model.

4) Development of the DOMS communication standard ena-
bling on-board and telemetry data flow capable of coping
with the wide variety of processes necessitated by the R&S
mission.

5) Careful modeling of the unstable platform dynamics al-
lowing confident and high-performance flight control.

6) Integration of the TEAMS system modeling and health
monitoring software to enhance reliability and mission flexi-
bility by providing real-time diagnostics to the mission plan-
ner.

7) Integration of the RIPTIDE simulation tool for develop-
ment and operational visualization.
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